Oxyanions in perovskites: from superconductors to solid oxide fuel cells.

نویسندگان

  • C A Hancock
  • J M Porras-Vazquez
  • P J Keenan
  • P R Slater
چکیده

In this article we review work on oxyanion (carbonate, borate, nitrate, phosphate, sulphate, silicate) doping in perovskite materials beginning with early work on doping studies in superconducting cuprates, and extending to more recent work on doping into perovskite-type solid oxide fuel cell materials. In this doping strategy, the central atom of the oxyanion group occupies the perovskite B cation site, with the associated oxide ions filling 3 (carbonate, nitrate, borate) or 4 (phosphate, sulphate, silicate) of the available 6 anion sites around this site, albeit displaced so as to achieve the required geometry for the oxyanion. We highlight the potential of this doping strategy to prepare new systems, stabilize phases that cannot be prepared under ambient pressure conditions, and lead to modifications to the electronic and ionic conductivity. We also highlight the need for further work in this area, in particular to evaluate the carbonate content of perovskite phases in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation the performance of solid oxide fuel cells and the role of nanotechnology in its construction

Nanotechnology is well used in the development and performance improvement of solid oxide fuel cells (SOFCs). The high operating temperature of SOFCs (700-900 ° C) has led to serious shortcomings in their overall performance and durability. Hence, the high operating temperature has been reduced to the average temperature range of approximately 44-700 Celsius, which has improved performance and ...

متن کامل

The study of Oxidation Behavior of AISI 439 Steel at the Presence of Manganese Oxides for the Application in Solid Oxide Fuel Cells

Long–term stability and oxidation resistance of AISI 439 ferritic stainless steel used as interconnects in solid oxide fuel cells can be improved by use of a protective coating. In this study the pack cementation method was employed to coat AISI 439 ferritic stainless steel with manganese. Isothermal oxidation was conducted at 800 ºC for 200 hours in static air to investigate the role of coatin...

متن کامل

Dynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation

The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...

متن کامل

Performance modeling and parametric investigation of a solid oxide fuel cell (SOFC)

In his paper, performance modeling and parametric study of a tubular solid oxide fuel cell (SOFC) fed by hydrogen was conducted. The components of the fuel cell system and its reactions were entirely modelled and an electrochemical analysis done for it. A variety of modeling parameters including temperature, working pressure and the air mass- flow rate have been investigated in order to observe...

متن کامل

Oxidation behavior and electrical Characteristics of used interconnects in solid oxide fuel cells at presence of Mn3O4 and MnFe2O4 coatings

In order to enhance the performance of interconnects which are used in solid oxide fuel cells (SOFCs), a protective/conductive coating can be applied. In this research AISI 430 ferritic stainless steel was coated in a Mn-base pack mixture by pack cementation method. In order to evaluate the oxidation behavior, isothermal oxidation was accomplished for 200 h at 800 ºC. Electrical behavior was al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 23  شماره 

صفحات  -

تاریخ انتشار 2015